Source code for models.backbones.resnet

"""
Model definition adapted from: https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
"""
import math
from typing import Optional, List, Union, Type

import torch.nn as nn
from torchvision.models.resnet import Bottleneck, BasicBlock

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}


[docs]def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
[docs]class ResNet(nn.Module): def __init__(self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], replace_stride_with_dilation: Optional[List[bool]] = None, **kwargs): super(ResNet, self).__init__() self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( f"replace_stride_with_dilation should be None or a 3-tuple, got {replace_stride_with_dilation}") self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False): downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(inplanes=self.inplanes, planes=planes, stride=stride, downsample=downsample, dilation=previous_dilation)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=self.dilation, norm_layer=nn.BatchNorm2d)) return nn.Sequential(*layers)
[docs] def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x
[docs]class ResNet18(ResNet): def __init__(self, **kwargs): super(ResNet18, self).__init__(BasicBlock, [2, 2, 2, 2], **kwargs)
[docs]class ResNet34(ResNet): def __init__(self, **kwargs): super(ResNet34, self).__init__(BasicBlock, [3, 4, 6, 3], **kwargs)
[docs]class ResNet50(ResNet): def __init__(self, **kwargs): super(ResNet50, self).__init__(Bottleneck, [3, 4, 6, 3], **kwargs)
[docs]class ResNet101(ResNet): def __init__(self, **kwargs): super(ResNet101, self).__init__(Bottleneck, [3, 4, 23, 3], **kwargs)
[docs]class ResNet152(ResNet): def __init__(self, **kwargs): super(ResNet152, self).__init__(Bottleneck, [3, 8, 36, 3], **kwargs)