Source code for models.backbones.segnet

# Adapted from https://github.com/zijundeng/pytorch-semantic-segmentation

import torch
from torch import nn

from src.models.backbones.VGG import vgg19_bn


[docs]class SegNet(nn.Module): def __init__(self, num_classes, pretrained=False, **kwargs): super(SegNet, self).__init__() vgg = vgg19_bn(pretrained=pretrained, **kwargs) features = list(vgg.features.children()) self.enc1 = nn.Sequential(*features[0:7]) self.enc2 = nn.Sequential(*features[7:14]) self.enc3 = nn.Sequential(*features[14:27]) self.enc4 = nn.Sequential(*features[27:40]) self.enc5 = nn.Sequential(*features[40:]) self.dec5 = nn.Sequential( *([nn.ConvTranspose2d(512, 512, kernel_size=2, stride=2)] + [nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True)] * 4) ) self.dec4 = _DecoderBlock(1024, 256, 4) self.dec3 = _DecoderBlock(512, 128, 4) self.dec2 = _DecoderBlock(256, 64, 2) self.dec1 = _DecoderBlock(128, num_classes, 2) initialize_weights(self.dec5, self.dec4, self.dec3, self.dec2, self.dec1)
[docs] def forward(self, x): enc1 = self.enc1(x) enc2 = self.enc2(enc1) enc3 = self.enc3(enc2) enc4 = self.enc4(enc3) enc5 = self.enc5(enc4) dec5 = self.dec5(enc5) dec4 = self.dec4(torch.cat([enc4, dec5], 1)) dec3 = self.dec3(torch.cat([enc3, dec4], 1)) dec2 = self.dec2(torch.cat([enc2, dec3], 1)) dec1 = self.dec1(torch.cat([enc1, dec2], 1)) return dec1
class _DecoderBlock(nn.Module): def __init__(self, in_channels, out_channels, num_conv_layers): super(_DecoderBlock, self).__init__() middle_channels = in_channels // 2 layers = [ nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2), nn.Conv2d(in_channels, middle_channels, kernel_size=3, padding=1), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True) ] layers += [ nn.Conv2d(middle_channels, middle_channels, kernel_size=3, padding=1), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True), ] * (num_conv_layers - 2) layers += [ nn.Conv2d(middle_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ] self.decode = nn.Sequential(*layers) def forward(self, x): return self.decode(x)
[docs]def initialize_weights(*models): for model in models: for module in model.modules(): if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear): nn.init.kaiming_normal_(module.weight) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.BatchNorm2d): module.weight.data.fill_(1) module.bias.data.zero_()