Source code for datamodules.IndexedFormats.utils.image_analytics

# Utils
import errno
import json
import logging
from pathlib import Path
from typing import Dict, Any, Tuple

import numpy as np
# Torch related stuff
from PIL import Image

from src.datamodules.utils.image_analytics import compute_mean_std
from src.datamodules.utils.misc import pil_loader_gif, save_json


[docs]def get_analytics(input_path: Path, data_folder_name: str, gt_folder_name: str, train_folder_name: str, get_img_gt_path_list_func: callable, inmem: bool = False, workers: int = 8) -> Tuple[Dict[str, Any], Dict[str, Any]]: """ Get the analytics for the dataset. If the analytics file is not present, it will be computed and saved. :param workers: Number of workers to calculate the mean and std :type workers: int :param inmem: Load the images in memory or load them separately :type inmem: bool :param input_path: Path to the root of the dataset :type input_path: Path :param data_folder_name: Name of the folder containing the data :type data_folder_name: str :param gt_folder_name: Name of the folder containing the ground truth :type gt_folder_name: str :param train_folder_name: Name of the folder containing the training data :type train_folder_name: str :param get_img_gt_path_list_func: Function to get the list of image and ground truth paths :type get_img_gt_path_list_func: Callable[[Path, str, str], List[Tuple[Path, Path]]] :return: Tuple of analytics for the data and ground truth :rtype: Tuple[Dict[str, Any], Dict[str, Any]] """ expected_keys_data = ['mean', 'std', 'width', 'height'] expected_keys_gt = ['class_weights', 'class_encodings'] analytics_path_data = input_path / f'analytics.data.{data_folder_name}.{train_folder_name}.json' analytics_path_gt = input_path / f'analytics.gt.{gt_folder_name}.{train_folder_name}.json' analytics_data = None analytics_gt = None missing_analytics_data = True missing_analytics_gt = True if analytics_path_data.exists(): with analytics_path_data.open(mode='r') as f: analytics_data = json.load(fp=f) # check if analytics file is complete if all(k in analytics_data for k in expected_keys_data): missing_analytics_data = False if analytics_path_gt.exists(): with analytics_path_gt.open(mode='r') as f: analytics_gt = json.load(fp=f) # check if analytics file is complete if all(k in analytics_gt for k in expected_keys_gt): missing_analytics_gt = False if missing_analytics_data or missing_analytics_gt: train_path = input_path / train_folder_name img_gt_path_list = get_img_gt_path_list_func(train_path, data_folder_name=data_folder_name, gt_folder_name=gt_folder_name) file_names_data = np.asarray([str(item[0]) for item in img_gt_path_list]) file_names_gt = np.asarray([str(item[1]) for item in img_gt_path_list]) if missing_analytics_data: analytics_data = _get_and_save_data_analytics(analytics_path_data, file_names_data, inmem=inmem, workers=workers) if missing_analytics_gt: analytics_gt = _get_and_save_gt_analytics(analytics_path_gt, file_names_gt) return analytics_data, analytics_gt
def _get_and_save_gt_analytics(analytics_path_gt: Path, file_names_gt: np.ndarray) -> Dict[str, Any]: """ Get the analytics for the ground truth. If the analytics file is not present, it will be computed and saved. :param analytics_path_gt: Path to the analytics file :type analytics_path_gt: Path :param file_names_gt: names of the files in the training set :type file_names_gt: np.ndarray :return: The analytics for the ground truth :rtype: Dict[str, Any] """ # Measure weights for class balancing logging.info('Measuring class weights') # create a list with all gt file paths class_weights, class_encodings = _get_class_frequencies_weights_segmentation_indexed(gt_images=file_names_gt) analytics_gt = {'class_weights': class_weights, 'class_encodings': class_encodings} # save json save_json(analytics_gt, analytics_path_gt) return analytics_gt def _get_and_save_data_analytics(analytics_path_data: Path, file_names_data: np.ndarray, inmem: bool, workers: int) -> Dict[str, Any]: """ Get the analytics for the data. If the analytics file is not present, it will be computed and saved. :param analytics_path_data: Path to the analytics file :param file_names_data: names of the files in the training set :return: The analytics for the data :rtype: Dict[str, Any] """ mean, std = compute_mean_std(file_names=file_names_data, inmem=inmem, workers=workers) img = Image.open(file_names_data[0]).convert('RGB') analytics_data = {'mean': mean.tolist(), 'std': std.tolist(), 'width': img.width, 'height': img.height} # save json try: with analytics_path_data.open(mode='w') as f: json.dump(obj=analytics_data, fp=f) except IOError as e: if e.errno == errno.EACCES: print(f'WARNING: No permissions to write analytics file ({analytics_path_data})') else: raise return analytics_data def _get_class_frequencies_weights_segmentation_indexed(gt_images: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ Get the weights proportional to the inverse of their class frequencies. The vector sums up to 1 :param gt_images: Path to all ground truth images, which contain the pixel-wise label :type gt_images: np.ndarray :return: The weights vector as a 1D array normalized (sum up to 1) :rtype: np.ndarray """ logging.info('Begin computing class frequencies weights') label_counter = {} color_table = [] unique_colors = 0 for path in gt_images: img_raw = pil_loader_gif(path) colors = img_raw.getcolors() if len(colors) > unique_colors: color_table = img_raw.getpalette() unique_colors = len(colors) for count, index in colors: label_counter[index] = label_counter.get(index, 0) + count classes = np.asarray(color_table).reshape(256, 3)[:unique_colors] num_samples_per_class = np.asarray(list(label_counter.values())) logging.info('Finished computing class frequencies weights') # Normalize vector to sum up to 1.0 (in case the Loss function does not do it) class_weights = (1 / num_samples_per_class) # / ((1 / num_samples_per_class).sum()) return class_weights.tolist(), classes.tolist()