datamodules.IndexedFormats.utils package

Submodules

datamodules.IndexedFormats.utils.image_analytics module

get_analytics(input_path: Path, data_folder_name: str, gt_folder_name: str, train_folder_name: str, get_img_gt_path_list_func: callable, inmem: bool = False, workers: int = 8) Tuple[Dict[str, Any], Dict[str, Any]][source]

Get the analytics for the dataset. If the analytics file is not present, it will be computed and saved.

Parameters:
  • workers (int) – Number of workers to calculate the mean and std

  • inmem (bool) – Load the images in memory or load them separately

  • input_path (Path) – Path to the root of the dataset

  • data_folder_name (str) – Name of the folder containing the data

  • gt_folder_name (str) – Name of the folder containing the ground truth

  • train_folder_name (str) – Name of the folder containing the training data

  • get_img_gt_path_list_func (Callable[[Path, str, str], List[Tuple[Path, Path]]]) – Function to get the list of image and ground truth paths

Returns:

Tuple of analytics for the data and ground truth

Return type:

Tuple[Dict[str, Any], Dict[str, Any]]

datamodules.IndexedFormats.utils.output_tools module

save_output_page_image(image_name, output_image, output_folder: Path, class_encoding: List[Tuple[int]])[source]

Helper function to save the output during testing in the DIVAHisDB format

Parameters:
  • image_name (str) – name of the image that is saved

  • output_image (np.ndarray) – output image at full size

  • output_folder (Path) – path to the output folder for the test data

  • class_encoding (List[Tuple[int]]) – list with the class encodings

Module contents